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HEAT TRANSFER FROM FIN-TUBE RADIATORS INCLUDING
LONGITUDINAL HEAT CONDUCTION AND RADIANT
INTERCHANGE BETWEEN LONGITUDINALLY

NONISOTHERMAL FINITE SURFACES

By E. M. Sparrow, V. K. Jonsson, and W. J. Minkowycz

SUMMARY

Consideration is given herein to two effects that have generally been neg-
lected in prior studies of fin~tube radiators: (1) the longitudinal conduction
of heat in the fin and (2) the effect of longitudinal temperature variation and
finite radiator length on the radiant interchange between radiator elements. It
is shown that longitudinal conduction is negligible for practical values of the
governing parameters appropriate to space-vehicle power systems. It is also dem=
onstrated that the radiant interchange can be calculated with sufficient accuracy
by assuming longitudinally isothermal surfaces that are essentially infinite in
length. These conclusions indicate that the problem can be treated in a quasi-
two=-dimensional manner. Results based on a quasi-two-dimensional model can be
generalized to the case of a longitudinally varying temperature by a step-by-step
method described herein.

INTRODUCTION

The need to dissipate energy from vehicles operating in atmosphere-free
space has stimulated considerable interest in the characteristics of finned sur-
faces that transfer heat by thermal radiation. Consideration has been extended
to thin plate-type fins, one edge of which is Joined to a tube containing a
flowing fluid from which heat is to be extracted. Figure 1 illustrates one of
several radiator configurations utilizing such fins.

The initial analyses of radiating fins were concerned with a single isolated
fin that radiates freely to space and which in turn may be irradiated from space;
references 1 and 2 are representative of such literature. Later analytical
treatments have considered the effects of radiant interaction between the fin
and the tube or between neighboring fins of an ensemble that are able to view
each other (e.g., refs. 3 and 4).

In formulating the energy balances from which heat-transfer solutions for
plane fins are ultimately derived, it has been standard to concentrate on the
transport processes that take place in the plane of a typical cross section of
the fin. Heat conduction normal to the plane of the fin cross section is



neglected. Additionally, as far as radiant transport is concerned, it is tacitly
assumed that temperature variations in the direction normal to the cross section
are negligiblel and that the length of the fin in this direction is effectively
infinite. As & consequence of these assumptions, the radiating-fin problem is
reduced essentially to a plane problem.

There are situations in which temperature variations normal to the fin cross
section necessarily occur, for example, when a single-phase fluid such as a
liquid metal or a gas flows through the tube. For such situations, it has been
proposed to apply the aforementioned solutions locally in a step-by-step manner
along the length of the radiator (i.e., along the direction of the fluid flow).
Such a calculation procedure neglects the effects of the longitudinal tempera-
ture variation on the heat conduction and on the radiant interaction between the
fin and tube surfaces, if such interaction exists.

It is the purpose of this report to reexamine the three-dimensional effects
in a quantitative manner and to evaluate the validity of the currently standard
plane formulation. The investigation to be described is divided into two parts.
The first part deals with the effects of heat conduction normal to the plane of
the fin cross section. The second part is concerned with the effects of a longi-
tudinal temperature gradient and of finite radiator length on the radiant inter-
action between fin and tube surfaces.

This research was sponsored by the National Aeronautics and Space Adminis-
tration through the Office of Grants and Research Contracts.

SYMBOLS
A surface area
Cp constant-pressure specific heat of fluid
e energy incident on fin surface element per unit time and area
F angle factor
h fin half-width
k thermal conductivity of fin material
L radiator length
m fluid flow rate
Ny base-surface temperature parameter, 4ktL/ﬁcph

Ne. fin-conductance parameter, ecT%hz/kt

lMis situation is approximated when there is a two-phase flow through the
tubes with small pressure dropss
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a
Subscripts:

bL

fin-conductance parameter based on Tp4

tube radius

absolute temperature

equivalent temperature of surrounding space
temperature of fin base

base temperature at z = 0

fin half-thickness

dimensionless coordinate, x/h

coordinate measuring distance across fin width
coordinate measuring distance across fin thickness
dimensionless coordinate, z/L

coordinate measuring distance along fin or tube length
fin surface emittance

conventional fin effectiveness

dimensionless temperature, T/Ty;

dimensionless equivalent space temperature, T*/Tbi
dimensionless fin-base temperature, Tb/Tbi
dimensionless temperature, T/Ty

dimensionless equivalent space temperature, T*/Tb

Stefan-Boltzmann constant

base at z = 1Li

fin

tube

mesh points, fig. 2

tubes 1 and 2, fig. 3



ANATYTICAL FORMULATION FOR LONGITUDINAL CONDUCTION

Consideration is given to the plate-type radiating fin that is pictured
schematically in figure 2. The fin thickness is 2%, the width is 2h, and the
length is L. The edges of the fin at x =0 and x = 2h are attached to tubes
through which a fluid is flowing. Except in a two-phase flow with negligible
pressure drop, the fluld temperature will change during the course of its passage
through the tube. Correspondingly, the temperature T,, at the fin base may be
a function of the longitudinal coordinate z. It is assumed that identical
thermal conditions exist along x =0 and x = zZh. Consequently, the line
X = h is a symmetry line.

In the currently standard formulation of the radiating-fin problem, the
heat conduction in the z-direction is neglected. Furthermore, within the frame-
work of thin-fin theory, the temperature is essentially independent of y.
Therefore, the energy conservation principle reduces to a balance between heat
_conduction in the x-direction and thermal radiation at the surface. For negli-
gible radiant interaction between fin and tube, the form of the heat-balance
equation that has become conventional in the study of radiating fins is

2
2kt é—g = 20¢(T* - T*%) (1)
dx

where T* is the equivalent temperature of the radiation from space that is in-
cident upon the fin. The factor of 2 that appears on the right side of equa-
tion (1) implies a symmetrical radiation to and from both sides of the fin.

Equation (1) is made dimensionless by defining

X = x/h 0 = T/
/ /o (2)
N, = eoTph?/kt o% = T*/T
from which it follows that
2
d~e
— = Ne(6% - 0*%) (3)
dX

The boundary conditions appropriate to the temperature varisble 6 are
=1 at X=0 and d0/dX =0 at X = 1. Solutions of equation (3) depend
parametrically on prescribed values of N, and o*,

Within the framework of this formulation, the possible dependence of T
on the longitudinal coordinate =z does not appear directly, although both N,
and 6% are functions of =z if Ty, depends on 2z. The only role of this
dependence would be perhaps to influence the selection of numerical values for
the parameters N, and o*.

Conduction of heat in the z-direction may be included in the analysis by
adding 2kt(32T/dz2) to the left side of equation (1), which gives
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The inclusion of the temperature variation in the =z-direction requires that
sultable boundary conditions be specified, The symmetry condition that

BT/SX =0 at x =h continues to apply, but the fin-base temperature T, de-
pends on Z. It is also necessary to stipulate the thermal conditions along the
edges z =0 and z = L. In practice, these conditions depend on the detailed
configuration of the radiator. With a view toward keeping the analysis general,
the adiabatic boundary condition GIVBZ = 0 1s imposed along these edges, Based
on experience with convective fins, it is expected that the use of such a bound-
ary condition will have a negligible effect on the final heat-transfer results
when the fin is thin.

An explicit specification of Tb(z) is needed. In general, for fluid flow-
ing through & tube attached to the edge at x = 0, the local value of Ty, could
be related to the local bulk temperature of the fluld by means of a heat-transfer
coefficient and a conductive resistance. In turn, the local bulk temperature
would be determined from an energy balance on the fluid. In view of the purposes
of the present investigation, however, a somewhat simpler procedure is to be
employed. It is the aim of this study to provide insight into the effects of
longitudinal conduction by comparing the results calculated from equation (4)
with those calculated by a step-by-step application of the solutions of equa-
tion (3). The essential matter is the comparison between the two sets of re-
sults, the absolute numerical values being of lesser consequence. From this
point of view, the analysis is simplified by taking the local fluid temperature
and the local fin-base temperature to be the same. In general, it is expected
that this approximation would exaggerate the longitudinal temperature gradient
along the fin base. For flows with high heat-transfer coefficients (e.g., liquid
metals or internally finned gas flows), however, the foregoing assumption is very
nearly satisfied. With this, an energy balance on the fluid yields

ey ATy, = 2[2kt 4z (3T/3x) g (5)

in which the left side 1s the change of enthalpy of the flowing fluid and the
right side is the heat conducted into a pair of fins attached to the tube. For
simplicity, the direct radiant-heat loss from the tube surface to space is not
included in this energy balance inasmuch as it is not essential for the purposes
of the present investigation. 2

In forming a dimensionless temperature variable, it is convenient to employ
as a standard the entering fluid temperature, which within the present approxi-
mation is equal to T, at =z = O, This is denoted by T3+ If one additionally
defines

2The effect of the radiant-heat loss from the tube would be to alter the
temperature change of the flowing fluid. ZFor the purpose of this analysis, how-
ever, any desired change in fluid temperature can be achieved by suitable selec-
tion of the forthcoming N, parameter.
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Z=7 © =T > (6a)
Ty,
% I%i y
3 1.2
N.: = %—h_ Nb o AktL (Gb)
ci = kt - ﬁlcph
equations (4) and (5) become
2 2 324
.a_@ + h - Nci[®4 - @*4:] (7a)
oxz  \I/ oaz2
4@, = Iy (08/0X)x.o 4% (7p)

The boundary conditions can also be represented in dimensionless form as

38/0X =0 at X =1
(8)
30/0Z =0 at Z=0 and Z=1

Inspection of the foregoing equations reveals that two new parametersy h/L and
Nps have been added to the problem in addition to N,; and &%

Solutions

A closed-form analytical solution of the mathematical system represented by
equations (7) and (8) cannot be achieved. Fortunately, solutions may be carried
out by numerical means, To accomplish such solutions, a finite-difference repre-
sentation of the governing equations is neededs With the aid of the finite-
difference mesh indicated in figure 2, one can write

]

320/0%2 = [, + @5 - 28y]/AXF (9a)

d%e/d72

i

[@2 + @4 - 2@0]/AZ2 (9b)

Tn addition, the ©% appearing in equation (7a) corresponds to C%.
There are actually a variety of forms into which the finite-difference rep-

resentation of the energy conservation equation can be cast, and it is desirable
to investigate which is most advantageous for the calculation. To check this
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matter, one may return to the simpler equation (3), for which highly accurate
numerical solutions have been carried out by other techniques. Several finite-
difference forms of equation (3) can be constructed, four of which are

60 = % (01 + 05) - 3 N, axZof (10a)
0g = [(61 + 65 - 260) /M, sz:ll/4 (10D)
6y = (67 + 02)/(2 + N, AX°63) (10c)
1/2
8p = {(91 + 93)/[(2/90) + N, sze@} (104d)

The 6% +term has been omitted for simplicity.

Any of the foregoing may be utilized in an iterative calculation scheme that
may be executed on a diglital computer. One begins by guessing the 6 values at
all the mesh points on the line from X =0 to X = 1. With this, the numerical
values of 6g, 67, and 6z that appear on the right side of the finite-
difference equations are available. The 6p appearing on the left side can
then be calculated. In this way, new 6 values for all mesh points can be ob-
tained and the procedure continued until convergence is achieved.

Equations (10a) to (104) were programmed for the Univac 1103 computer, and
iterative solutions attempted with each. Equation (10c) led to smooth conver-
gence of the iterative procedure, while difficulties were encountered with the
others., Furthermore, a mesh size AX = 0.1 led to a converged result that was
in very close agreement with prior numerical solutions performed by other meth-
ods.

A finite~difference form of equation (7a), which is an appropriate general-
ization of equation (10c), is

@ + 63 + (%)2(%)2(% + ©4)
2[1 + (%)2(2—%)2] + N AxPe]

in which ©* has been taken to be zero to reduce the number of parameters. In
addition, the condition (7b) for determining ©,(Z) takes the form

€y = (11)

} s‘@)
Op(Z + AZ) = ©,(Z2) + Iy <ﬁ o AZ, (12a)
in which

@_—g)x:o - :'éL- [%% (0,7) +g—)@( (0,2 + AZ)] (12b)



The derivatives in the brackets were evaluated numerically by applying a stand-
ard five-point right-hand difference formula

%% (0,2) = 1z%ax [}zsc%(z) + 480(AX,7) - 360(2AX,Z) + 166(3AX,Z) - 3@(4ax,zﬂ

(12c)

From the foregoing, it is clear that the boundary condition along X = 0, that
is, the ©p(Z), does not remain fixed during an iterative computation, but rather
changes from one cycle of the iteration to the next. This is one of the inter-
esting and novel computational features of the present problem. Finally, the
adiabatic conditions of equation (8) were accounted for by making standard modi-
fications in equation (11) at the boundary points.

The solution for the temperature can, in principle, be carried out by apply-
ing equations (11) and (12) in an iterative manner. One may begin by guessing
the temperatures at all the mesh points in the grid. With these, new values of
® may be calculated by successive application of equation (11) at all points
except those along the line X = 0. The latter are found by application of
equation (12a) once the derivatives (d6/dX)x=p have been computed from equa-
tions (12b) and (12c)., In this way, new values of @ are made available at all
points of the grid and the next cycle of the iteration may be begun.

In practice, it is readily found that such an iterative procedure does not
converges in fact, the © values diverge after a few cycles of the iteration.
To understand and to surmount this difficulty, it is necessary to consider the
computation process in greater detail., In connection with the difference for-
mula (12c), it may be noted that, if the values of @y(Z), O(AX,Z), ©(24X,Z),
and so forth, are not smooth, the derivative calculated from equation (12c¢) is
in error and so is ©p. Such errors serve as sources of instability and ulti-
mately cause divergence of the iterative procedure.

Further consideration suggests that the 6,(Z), ©(AX,Z), 6(2AX,Z), and so
forth, are not smooth if Cb(Z) is recalculated at each cycle of the iterative
process, particularly during the early cycles of the calculation when all values
of ® are approximate., For this reason, the iterative procedure was modified
so that ©p(Z) is reevaluated only once in every n cycles of the iteration -
the number n being equal to the number of mesh points lying in the x~-direction
between 0 < X £ 1. In other words, n cycles of the iteration are carried out
with fixed ©p(Z), then ©p(Z) is reevaluated, n additional cycles are carried
out, and so forth. This procedure permits the effect of a change in ©, to be
felt at all points in the mesh before the next change in ©p is made. In the
present calculations, n was equal to 10. In the later stages of the iterative
process, when convergence is being approached, @b(Z) can be recalculated once
every S5 cycles without giving rise to instability.

Results

Consideration of proposed radiator configurations for space-vehicle power
systems suggests that it is quite unlikely that the aspect ratio h/L will

8



exceed 1/30. Additionally, it was found by calculation that a realistic value
of Ngiy for such applications is 1. Corresponding to these values of h/L and
Noi, solutions to equation (11) were carried out for Ny = 0.7 and Ny = 0.4.

From among the totality of ©® +values determined from these solutions, the
@b(Z) are perhaps of greatest interest because they correspond most closely to
the distribution of the fluld temperature. In particular, 8 at 2 = 1 cor-
responds to the ratio of the fluid temperature at the outlet to the fluid tem-
perature at the inlet. Therefore, @,(1) is an indication of the heat loss from
the fin. The ©,(Z) from the solutions of equation (11) are listed in table I
for Wp = 0.7 and Np = 0.4. To illustrate the fluid temperature changes em-
bodied in these solutions, it is seen from table I(b) that for Ny = 0.7 there
will be a temperature change between the inlet and the outlet of 400C ¥ if
Ty = 1600° R.

The temperature results determined from equation (ll) are now compared with
an alternative set of results based on a step-by-step application of the solu-
tions of equation (3). The underlying assumption of this step-by-step calcula-
tion is that longitudinal conduction can be neglected. On this basis, the
length of the fin L 1is divided into a set of strips, each having a width A=z.
To each such strip, a conductive-radiative energy balance having the form of
equation (3) is applied. Because the fin-base temperature T,(z) at =z would
not be known & priori, however, neither would the corresponding value of N,
that appears in equation (3). The local values of Tp and Ne can be found by
the procedure described in the following paragraphs.

The first task in the procedure is to solve equation (3) for a succession
of N, values that span the range of interest. These solutions were carried out
by utilizing the finite-difference equation (10c). 'The derivatives
[@(T/Tb)/dx %=0 that were thus obtained are listed in table II as a function of

Ne- It may be noted that this derivative is related to the conventional fin
effectiveness 1 as follows:

[a(z/mp)/ax], ) = -,

The basic calculation formulas for the step-by-step method are equa-
tions (12a) and (12b). The essential feature of the calculation is that the de-
rivatives appearing on the right side of equation (12b) are evaluated from
table II or a plot thereof. To begin the calculation, one has the given values
(0) =1 and N,; at Z =0, Corresponding to Ny, the derivative
?E(T/Tb)/dzjx;o is available from table II. Then, & guess is made of @, at

the first point Z = AZ. With this guess N, at Z = A7 can be calculated as
follows:

No(az) = Ny [y (a2)]”

and the corresponding [ﬂ(T/Tb)/deX%O may be read from table IT. The d@/dX
needed in equation (12b) is evaluated from the identity



ax T \T, =

dx dx
With this information, the derivative Ta®7dX5X?o can be computed from equa-
tion (12b), and a value of @, at Z = AZ may be found from (12a). If this
new value of @, at Z = AZ coincides with the previously guessed value, the
first step has been taken successfully. If not, one makes & new guess and re-
peats the procedure.

ae (Tb ) a(m/m,) a(r/m,)

Utilizing the aforementioned procedure, one may proceed in a step-by-step
manner along the fin base from Z =0 to Z = 1. The results of such a stepwise
calculation are listed in table I in an arrangement convenient for comparison
with the results calculated from equation (11), the latter including longitudi-
nal conduction. An inspection of the two sets of results reveals differences
that are no greater than 1 in the fourth decimal place. BSuch differences are
fully negligible. Thus, on the basis of the foregoing comparison, it appears
that longitudinal conduction in the fin is completely negligible for the param-
eter values chosen in this investigation. It is not believed that the substance
of this conclusion is affected by the simplifying assumptions of the foregoing
analysis, ‘The parameter values for which numerical results were reported were
chosen for liquid-cycle systems. For gas cycles, however, the Np parameter
might well exceed 0.7, which was the largest value included in this study. The
effect of a larger N value would be to increase the temperature drop of the
flowing fluid. On the other hand, the h/L parameter for the gas-cycle radiator
is likely to be smaller than the value of 1/50 employed in the calculations. By
inspection of equation (7), it is seen that a decrease in h/L, for example, from
1/50 to 1/60, tends to reduce the effect of longitudinal conduction by a factor
of 4. 'Therefore, the larger longitudinal temperature differences that might be
encountered in a gas-cycle system would not change the substance of the conclu-
sion stated in the foregoing.

LONGITUDINAT, RADIANT TRANSPORT

In order for there to be radiant interchange between radiator elements, it
is necessary that there be a direct view between such elements. There is a wide
variety of radiator configurations in which radiant interaction can occur. For
concreteness, consideration is given herein to the fin-tube arrangement of fig-
ure l. A more detailed representation of this configuration is shown in figure 3
to facilitate discussion of the radiant-interchange problem.

There are two types of radiant interaction that may occur in such a config-
uration. First, radiant energy from the tube surfaces may be incident upon the
fin. Second, radiant energy from the fin may be incident upon the tubes. In
general, such interchange includes radiation that is both emitted and reflected
from the participating surfaces. To simplify the present discussion, the fin and
tube surfaces are taken to be essentially black so that interreflected radiation
may be neglected. In addition, it is assumed that the temperature of each tube
is circumferentially uniform and varies only along the length and that both tubes
have the same temperature.

10
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The radiant interaction problem connected with the fin-tube arrangement of
figure 3 is considered in reference 4, but in a quasi-two-dimensional manner.
It is assumed in that analysis that the radiation arriving at an elemental area
of fin comes from a pair of tube surfaces that are both circumferentially and
longitudinally isothermal and of infinite length. Also, the radiation arriving
at an element of tube surface is assumed to come from a longitudinally isother-
mal fin of infinite length. The dual assumptions of longitudinal isothermality
and infinite length permit the longitudinal transport of radiation to be ac-
counted for in a very simple manner which, in effect, removes the third (longi-
tudinal) dimension from the problem. In fact, in the final formulation, the
problem has the appearance of being two-dimensional (in the cross section of the
fin and tubes).

When consideration is given to longitudinal temperature variations and to
finite-length surfaces, the radiant interaction does not appear, at first glance,
to lend itself to treatment by the simple methods of reference 4. To solve the
fin-tube radiator completely, including such nonelementary radiant interactions
is an exceedingly lengthy computational task, although there are no conceptual
difficulties in the analysis. Clearly, the quasi-two-dimensional treatment of
reference 4 would be preferable provided that it could be applied without signif-
icant loss of accuracy. It is the present purpose to explore the adequacy of
the quasi-two-dimensional treatment of the radiant interchange. In the forth-
coming analysis, longitudinal conduction is neglected in accordance with the
earlier findings of this report.

Effect on Fin Heat Transfer

Consideration is first given to the effects of the radiant interaction on
the heat loss from the fin. The energy balance for an elementary volume of fin
may be found by generalizing equation (1) to include radiant energy incident
upon the fin from the tube surfaces. From an element of tube surface, such as
dAq (figs 3), there is emitted in all directions an energy quantity

oEﬁb(ti]é dAy. Of this, an amount o(dAl/dAf)[[I‘b(ti]4 dFdAl—dAf arrives per
unit area at an elementary fin area dAp., The symbol dFdAi—dAf denotes the

angle factor for diffuse interchange between dA; and dAp., According to the
reciprocity relation for diffuse angle factors, dA; dFdAl—dAf’SdAf dFdAf-dAl'

With this, the energy arriving at dAp from dA; can be written as
dEDb(zt)]4 dFdAf-dAii but dAp receives radiant energy from all elements dA;

on tube 1 as well as from all elements dA; on tube 2, and the total of such
contributions is

ey =0 [Tb(zt)]é[dFd.Af—dAl -+ dFdAf_dAzj (13)

z=0

11



This incident energy quantity may be appended to equation (1), which may be
specialized to the blackbody case by setting € = 1. In addition, as a simpli-
fication, TF is taken to be zero. With these the energy balance becomes

L
i LT ort - g [Tb(zt)]4[dFd_Af_dAl + dFd_Af_dAz] (14)
0

The integral on the right side of equation (14) is an exact representation of the
radiation emitted by the tubes that falls on the surface element dAp located

at position x,z on the fin. If the major part of this incident radiation were
to originate at tube locations just opposite the fin surface element dAp, that
is, at locations zy = z, one might propose to approximate the integral such

that

co

e = O[Tb(z)J4 / [dFdAf-d.Al + dFd_Af—dAz] (15)

Furthermore, according to reference 4, [iFdAf—dAl + dFdAf-dAz] may be car-
-0

ried out in closed form and is expressed by

00

1) VIwm) + %% - (r/n)®
[Fanc-any + Fanp-ang] = Few = 1 - 3 Lnfey 35 (el

- 00

VIrm) +2 - xP - (3/n)°
®/M) +2 - % (16)

e

With this, an approximate form of the energy balance, equation (14), can be
written for fin location =z

2
xt &L - ot L o(F._)TEH(2) (17)
dxz f-t/-b

in which T%(z) is a constant as far as the integration in x is concerned.
Therefore, eqguation (17) can be solved without recourse to the longitudinal var-
iation of the temperature, and the problem has a quasi-two-dimensional appear-
ance.

It remains to ascertain whether the fin heat-transfer results calculated
from the approximate equation (17) are an adequate representation of the heat-
transfer results that would be calculated from equation (14). In proceeding with

12



this determination, it 1s reascnable to confine consideration only to those sit-
uations where the radiant interaction plays a nonnegligible role in the fin heat-
transfer process, In reference 4 it is shown that for tube radii R up to

0.2 h, the radiant interaction affects the fin heat transfer by 7 percent or less
when N. = 1. Therefore, approximations in the calculation of the radiant inter-
action should have a minor effect on fin heat transfer for R/h values up to
0.2. On the other hand, it is not expected that practical radiator configura-
tions would have R/h values exceeding 0.4. According to reference 4, the ef-
fect of the radiant interaction is to reduce the fin heat loss by 13 percent for
R/h = 0.4 and N = 1. In light of the foregoing discussion, consideration is
given to the case of R/h = 0. 4.

In order to proceed with the analysis, it is necessary to know the angle
factor

Fapp-aay + Faap-dag = Faar-(da)+iss)

where the representation on the right side is meant to indicate that the tube
surface elements dA; and dJAp are taken at the same zg-coordinate. This
angle factor may be derived by direct evaluation of the basic angle factor def-
inition. When the indicated integrations are carried out, there results

( h

~ 2 2 N
SR TR0 P R TG I
ahp-(ahy+ahy)| ﬁix 2 _(_E>z+(%>z P i[(~_%)2+(%)2 Zzl

ICRER R E R
h

[ee-0)-e-5- (3 ]

P

in which Z has the same definition as previously, while X denotes a shifted
x-coordinate as follows:

X=X+ (R/h) (18b)

To provide a feeling for the variation of this angle factor as a function of
the longitudinal separation between dJdAr and the elements dAy and dAy, a rep-
resentative tabulation is presented. This information, corresponding to

13



x/h = 0.35, is presented in table IIL. The R/h and b/, parameters have val-
ues of 0.4 and 1/30, respectively. Inspection of the table reveals that the
angle factor drops off rapidly as 2y deviates from Z. This suggests that the
bulk of the radiation arriving at dAf comes from the elements dA; and dAs
that are located directly opposite dAr, that is, at Z; = Z. This conclusion
tends to support the assumptions made in deriving the approximate energy equa-
tion (17)., An even sharper dropoff in the angle factor would be observed at
locations characterized by smaller values of x/h. On the other hand, the drop-
off would be slower at locations near x/h = 1, where the radiant energy trans-
fers are relatively small.

Additional information may be gathered by comparing the exact approximate
values of the energy e; incident at dJdAp represented by equations (13)
and (15). For convenience in carrying out the integration in equation (13), the
variation of T, with z¢ 1s taken to be linear, that is,

Tp = Tpi - (Tpi - Tpr)(z4/L) (19a)

O, =1 - (1 - 6y)2% (19p)

It is recognized that the actual variation of Ty, with 2z 1s not linear; how-
ever, the essential conclusions drawn are not prejudiced by this assumption.
With Ty from equation (l9a) and the angle factor from (lBa), e; may be eval-
uated in closed form from equation (13). Alternatively, an approximate value of
e; may be calculated from equation (15) in conjunction with equation (18a).

The results thus obtained are presented in table IV as a function of posi-
tion X across the fin. The tabulated quentity is the ratio e;(X)/e;(0), which
is the ratio of the energy incident at location X +o that incident at X = O.
Information is provided at longitudinal positions near the fluid inlet end of the
radiator (Z = 0.06), at the midregion (Z = 0.5), and near the outlet end
(Z = 0.94).3 The fin-tube dimension parameter R/h corresponding to these re-
sults is 0.4, the radiator aspect ratio h/L is 1/30, and the longitudinal tem-

perature ratio Opr,(=Tp,/Tpi) is 0.5.

When these results are appraised, cognizance should be taken of the fact
that the values of e;(0) calculated from equations (13) and (15) are negligibly
different. Therefore, a comparison of the e;(X)/e;(0) ratios corresponding to
equations (13) and (15) immediately provides a measure of the approximation in-
troduced when the latter is applied. By inspection of the tabulations it is seen
that there is very little difference in the incident radiation calculated from
equations (13) and (15). The largest deviations occur at longitudinal positions
near the inlet end of the radiator, that is, at small Z (table IV(a)). Even

3Values of Z =0 and Z = 1.0 were not used because it is expected that
heat transfer in these regions might be dominated by the specific configuration
of headers or manifolds used to distribute the fluid to the radiator. Under
these circumstances, the effects considered here would be overridden by the pres-~
ence of the headers or manifolds.
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these differences are quite small, however.

In appraising the effect of these slight differences in e; upon the fin

1
heat loss, it is useful to consider the quantity E; = / e; dX, which is the
0

total incident radiation on a longitudinal strip of fin. At the position

Z = 0.06 the value of E; based on equation (15) is 1.3 percent higher than that
calculated from equation (13). It is shown in reference 4, however, that Eji

is of the order of 13 percent of the energy radiated from the fin surface when
R/h = 0.4 and N, = 1. Thus, for these conditions an uncertainty of 1.3 percent
in Ei gives rise to an uncertainty of only about 0,2 percent in the fin heat
loss., The level of uncertainty i1s even smaller at the other longitudinal posi-
tions.

It would appear from the foregoing that the radiation incident on the fin
can be calculated as if the tube surfaces were isothermal and of infinite length.
From the mathematical point of view, this means that one may employ the simpli-
fied energy equation (17) in place of equation (14). The former is solved in
reference 4 for a range of values of N, and R/h. These solutions may be ap-
plied to a radiator having varying Tp by utilizing a step-by-step method sim-
ilar to that devised earlier in the section Solutions.

Effect on Tube Heat Transfer

Consideration is now given to the effect of radiant interchange on the
radiant-heat loss from the tubes. In particular, it is desired to determine
whether the radiant energy incident on a tube surface element can be calculated
as 1f the system were longitudinally isothermal and of infinite length. To sim-
plify the discussion, it is assumed that the fin and tube surfaces are black and
that T* is negligible,

When referring to figure 3, it is seen that radiant energy arriving at a
typical element of tube, such as dAs, comes from the fin and the opposite tube.
Attention is given first to the radiation from the fin that arrives at an element
of tube surface. As a consequence of the reciprocity relation

dAp (dFdAf-d_Az) = dAp (dFdA2 -aAf>

it follows that the angle factors used in calculating the radiation from fin to
tube are, in essence, the same as those used in calculating the radiation from
tube to fin. From this, it further follows that the conclusions previously
arrived at for the tube-to-fin radiation carry over to the fin-to-tube radiation.
Since, as shown previously, longitudinal temperature variations and finite system
length need not be considered in calculating the tube-to-fin radiation, the same
should hold for the fin-to-tube radiation. In other words, ohe may calculate the
radiation arriving at an element of tube located at =z Dby supposing that the
fin is longitudinally isothermal and infinite and has a temperature distribution
T(x) corresponding to that at =z = zt.

15



Next, consideration may be given to the radiant energy arriving at an ele-
mental area of one tube from the opposite tube. From an evaluation of equa-
tions (15) and (18) of reference 5, it is readily shown that, for the condition
R/h = 0.4, the incident energy quantity is of the order of 5 percent of the
energy emitted by the area element. Therefore, approximations in the calculation
of the incident energy have a very small effect on the heat loss from the tube.
Nevertheless, an analysis is presented to determine the error involved when a
simplified method of calculating the tube-to-tube radiant transfer is used.

The radiant energy arriving per unit area at element dAp; due to emission
from the opposite tube is

o [Tb(zt,l)]4 Fanp-dhy (20)

24,170

The angle factor dFdAz—dAi that appears in the integral was derived as de-

scribed in reference 5. To provide a feeling for the variation of the angle
factor as a function of longitudinal separation between the elements, table V is
presented. The results listed therein correspond to R/h = 0.4 and h/L = 1/30.
It is seen that the angle factor drops off quite rapidly with longitudinal sepa-
ration. This suggests that an approximation to equation (20) be attempted in the
form :

cl:Tb(zt):]4f aFqp,-an, (21)

in which T (z) is the tube temperature at Zy p = Zg,1e

Equation (20) has been evaluated by utilizing as input the linearly varying
tube temperature of equation (19), with @py, = 0.5, This result may be compared
with an alternative value calculated from equation (21). For tube surface ele-
ments that are located in the range 0.1 < Ziy < 0.9, the incident energy calcu-
lated from equation (21) differs by about 0.5 percent from that calculated from
equation (20). It may be recalled that the incident energy is itself only 5 per-
cent of the emitted energy. Therefore, the uncertainty of 0.5 percent in the
incident energy gives rise to an uncertainty of less than 0,05 percent in the
heat loss. This uncertainty is, of course, fully negligible.

The use of equation (21) in place of equation (20) grows less exact near
the inlet and outlet regions of the radiator, that is, for 72 values near O
and 1. 'The close proximity of headers and manifolds to these regions suggests,
however, that other effects may well outweigh the approximation made in the cal-
culation of the tube-to-tube radiant interchange.

From the foregoing discussion, it would appear that the calculation of radi-
ant energy incident on an element of tube surface can be carried out by assuming

16
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that the fin and the opposite tube are longitudinally isothermal and of infinite
length. This is, in fact, the quasi-two-dimensional treatment employed in ref-
erence 4.

CONCLUDING REMARKS

The investigation reported herein has considered two effects that have gen-
erally been neglected in prior studies of fin-tube radiators: (l) the longitu-
dinal conduction of heat in the fin and (2) the effect of longitudinal tempera-
ture variation and finite radiator length on the radiant interchange between
radiator elements. It has been shown that longitudinal conduction is negligible
for practical values of the governing parameters appropriate to space-vehicle
power systems. It has also been demonstrated that the radiant interchange can be
calculated with sufficient accuracy by assuming longitudinally isothermal sur-
faces that are essentially infinite in length.

These conclusions indicate that the problem can be treated in a quasi-two-
dimensional manner, as in reference 4. The results of reference 4 can be gen-
eralized to a situation with longitudinally varying temperature by a step-by-step
method of the type described herein.

Heat Transfer Laboratory

Department of Mechanical Engineering
University of Minnesota

Minneapolis, Minn.

July 30, 1963
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TABLE T.

- DIMENSIONLESS FIN-BASE

TEMPERATURES @, (Z) AT Z, N ;=1

Dimensionless
coordinate,

Dimensionless
coordinate,
Z

0
e
3/6
e

1

(a) M, = 0.4

Solution of | Step-by-step
eq. (11) method
1.0 1.0

. 9662 . 9662

. 9356 . 9356

» 9077 9077

. 8823 . 8822

. 8589 . 8588

. 8373 « 8372
(b) N, = 0.7

Solution of Step-by-step
eq. (11) method
1.0 1.0

. 9428 « 9429
« 8945 « 8946
« 8530 » 8531
. 8170 + 8171
. 7854 . 7855
« 7574 . 7575
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TABLE IT. -~ TEMPERATURE DERIVATIVES FOR THE

ONE~DIMENSIONAL CONDUCTION EQUATION (3)

Fin-conductance | Temperature derivative,
par;meter R [al(T/T,)/ dX]X:O

c
1.00 -0.5323

.95 -.5149

.90 -. 4972

.85 -. 4788

.80 -. 4598

.75 -. 4403

.70 -. 4200

.65 -. 3991

. 60 ~. 3774

.55 -. 3549

.50 -. 3314

.45 -. 3068

.40 -.2811

TABLE ITI. - LONGITUDINAL VARTATION OF

FIN-TO-TUBE ANGLE FACTOR®

Longitudinal distance, Angle-factor ratio
£Z = |Z, - Z FF ]/[dF ]
t - -
dAp dA dAp-dAy o
0 1.0

.05 ».0155

.10 . 00232

«15 . 00060

«20 . 00021

«25 « 000091

« 30 . 000045

8The symbol dA, 1is used as an abbreviation for
(ap, + dahy).




TABLE IV. - ENERGY INCIDENT ON FIN SURFACE ELEMENTS

Dimensionless Incident-energy ratio, e;(X)/e;(0)
coordinate,
X e; obtained from | e; obtained from
eq. (13) eq. (15)
Dimensionless coordinate, Z, 0.06
0 1.0 1.0
o1 »408 »410
.2 » 266 . 268
.3 »193 +195
4 +150 » 152
v5 122 «125
6 « 104 » 107
7 . 0924 « 0952
.8 - 0848 « 0877
»9 » 0805 » 0836
1.0 + 0792 0822
Dimensionless coordinate, Z, 0.5
0 1.0 1.0
v 1 »410 » 410
o2 + 268 «268
3 +195 . 195
o4 <152 »152
#5 125 »125
6 » 107 +107
7 0954 +» 0952
8 . 0880 » 0877
»9 » 0838 » 0836
1.0 » 0825 . 0822
Dimensionless coordinate, Z, 0.94
0] .0 1.0
.1 » 409 »410
«2 + 267 » 268
«3 v 194 »195
4 151 »152
5 o124 «125
.6 «106 «107
»7 » 0940 » 0952
»8 » 0865 . 0877
«9 «0823 «0835
1.0 « 0809 » 0822
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TABLE V. - LONGITUDINAL

ANGLE

VARTATTON OF TUBE-TO-TUBE

FACTOR

Longitudinal distance,
L2 = |Lg,2 = Zt 1]

Angle-factor ratio

EFdAZ-dAl Farg-an |

=0

« 05
«10
+15
.20
23
+ 30

1.0
» 452
116
. 0350
. 0132
. 0059
«0030
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Figure 1. - Schematic of fin-tube radiator with central fin.
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Figure 2. - Coordinates and nomenclature for analysis of longitudinal
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conduction in radiator fin.
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FPigure 3. - Coordinates and nomenclature for analysis of radiant interchange.
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